A team of scientists, including Carnegie's Conel Alexander and Jianhua Wang, studied the hydrogen in water from the Martian interior and found that Mars formed from similar building blocks to that of Earth, but that there were differences in the later evolution of the two planets. This implies that terrestrial planets, including Earth, have similar water sources--chondritic meteorites. However, unlike on Earth, Martian rocks that contain atmospheric volatiles such as water, do not get recycled into the planet's deep interior. Their work will be published in the December 1 issue of Earth and Planetary Science Letters. It is available online.
"
Composite image of Earth and Mars. The Earth image was acquired from the Galileo orbiter on Dec. 11, 1990, when the spacecraft was about 1.3 million miles from the planet during the first of two Earth flybys on its way to Jupiter. The Mars image was acquired by the Mars Global Surveyor in April of 1999 [Credit: NASA/JPL]"
Much controversy surrounds the origin, abundance and history of water on Mars. The sculpted channels of the Martian southern hemisphere speak loudly of flowing water, but this terrain is ancient. Consequently, planetary scientists often describe early Mars as "warm and wet" and current Mars as "cold and dry."
Debate in the scientific community focuses on how the interior and crust of Mars formed, and how they differ from those of Earth. To investigate the history of Martian water and other volatiles, scientists at NASA's Johnson Space Center in Houston, Carnegie, and the Lunar and Planetary Institute in Houston studied water concentrations and hydrogen isotopic compositions trapped inside crystals within two Martian meteorites. The meteorites, called shergottites, were of the same primitive nature, but one was rich in elements such as hydrogen, whereas the other was depleted.
The meteorites used in the study contain trapped basaltic liquids, and are pristine samples that sampled various Martian volatile element environments. One meteorite appears to have changed little on its way from the Martian mantle up to the surface of Mars. It has a hydrogen isotopic composition similar to that of Earth. The other meteorite appears to have sampled Martian crust that had been in contact with the Martian atmosphere. Thus, the meteorites represent two very different sources of water. One sampled water from the deep interior and represents the water that existed when Mars formed as a planet, whereas the other sampled the shallow crust and atmosphere.
"There are competing theories that account for the diverse compositions of Martian meteorites," said lead Tomohiro Usui. "Until this study there was no direct evidence that primitive Martian lavas contained material from the surface of Mars."
Because the hydrogen isotopic compositions of the two meteorites differ, the team inferred that martian surface water has had a different geologic history than Martian interior water. Most likely, atmospheric water has preferentially lost the lighter hydrogen isotope to space, and has preferentially retained the heavier hydrogen isotope (deuterium).
That the enriched meteorite has incorporated crustal and atmospheric water could help to solve an important mystery. Are Martian meteorites that are enriched in components, such as water, coming from an enriched, deep mantle, or have they been overprinted by interaction with the Martian crust?
"The hydrogen isotopic composition of the water in the enriched meteorite clearly indicates that they have been overprinted, so this meteorite tells scientists more about the Martian crust than about the Martian mantle," Alexander said. "Conversely, the other meteorite yields more information about the Martian interior."
The concentrations of water in the meteorites are also very different. One has a rather low water concentration and that means that the interior of Mars is rather dry. Conversely, the enriched basalt has 10 times more water than the other one, suggesting that the surface of Mars could have been very wet at one time. Therefore, scientists are now starting to learn which meteorites tell us about the Martian interior and which samples tell us about the Martian surface.
"To understand the geologic history of Mars, more information about both of these environments is needed," Alexander said.
"Source: Carnegie Institution [November 19, 2012]"
"
Composite image of Earth and Mars. The Earth image was acquired from the Galileo orbiter on Dec. 11, 1990, when the spacecraft was about 1.3 million miles from the planet during the first of two Earth flybys on its way to Jupiter. The Mars image was acquired by the Mars Global Surveyor in April of 1999 [Credit: NASA/JPL]"
Much controversy surrounds the origin, abundance and history of water on Mars. The sculpted channels of the Martian southern hemisphere speak loudly of flowing water, but this terrain is ancient. Consequently, planetary scientists often describe early Mars as "warm and wet" and current Mars as "cold and dry."
Debate in the scientific community focuses on how the interior and crust of Mars formed, and how they differ from those of Earth. To investigate the history of Martian water and other volatiles, scientists at NASA's Johnson Space Center in Houston, Carnegie, and the Lunar and Planetary Institute in Houston studied water concentrations and hydrogen isotopic compositions trapped inside crystals within two Martian meteorites. The meteorites, called shergottites, were of the same primitive nature, but one was rich in elements such as hydrogen, whereas the other was depleted.
The meteorites used in the study contain trapped basaltic liquids, and are pristine samples that sampled various Martian volatile element environments. One meteorite appears to have changed little on its way from the Martian mantle up to the surface of Mars. It has a hydrogen isotopic composition similar to that of Earth. The other meteorite appears to have sampled Martian crust that had been in contact with the Martian atmosphere. Thus, the meteorites represent two very different sources of water. One sampled water from the deep interior and represents the water that existed when Mars formed as a planet, whereas the other sampled the shallow crust and atmosphere.
"There are competing theories that account for the diverse compositions of Martian meteorites," said lead Tomohiro Usui. "Until this study there was no direct evidence that primitive Martian lavas contained material from the surface of Mars."
Because the hydrogen isotopic compositions of the two meteorites differ, the team inferred that martian surface water has had a different geologic history than Martian interior water. Most likely, atmospheric water has preferentially lost the lighter hydrogen isotope to space, and has preferentially retained the heavier hydrogen isotope (deuterium).
That the enriched meteorite has incorporated crustal and atmospheric water could help to solve an important mystery. Are Martian meteorites that are enriched in components, such as water, coming from an enriched, deep mantle, or have they been overprinted by interaction with the Martian crust?
"The hydrogen isotopic composition of the water in the enriched meteorite clearly indicates that they have been overprinted, so this meteorite tells scientists more about the Martian crust than about the Martian mantle," Alexander said. "Conversely, the other meteorite yields more information about the Martian interior."
The concentrations of water in the meteorites are also very different. One has a rather low water concentration and that means that the interior of Mars is rather dry. Conversely, the enriched basalt has 10 times more water than the other one, suggesting that the surface of Mars could have been very wet at one time. Therefore, scientists are now starting to learn which meteorites tell us about the Martian interior and which samples tell us about the Martian surface.
"To understand the geologic history of Mars, more information about both of these environments is needed," Alexander said.
"Source: Carnegie Institution [November 19, 2012]"
0 comments:
Post a Comment